SOA真题November2005ExamM精算师考试

文章作者 100test 发表时间 2008:12:31 18:43:32
来源 100Test.Com百考试题网


Exam M Fall 2005
FINAL ANSWER KEY
Question # Answer Question # Answer
1 C 21 E
2 C 22 B
3 C 23 E
4 D 24 E
5 C 25 C
6 B 26 E
7 A 27 E
8 D 28 D
9 B 29 A
10 A 30 D
11 A 31 A
12 A 32 A
13 D 33 B
14 C 34 C
15 A 35 A
16 D 36 A
17 D 37 C
18 D 38 C
19 B 39 E
20 B 40 B
Exam M: Fall 2005 -1- GO ON TO NEXT PAGE
**BEGINNING OF EXAMINATION**
1. For a special whole life insurance on (x), you are given:
(i) Z is the present value random variable for this insurance.
(ii) Death benefits are paid at the moment of death.
(iii) ( ) 0.02, 0 xt t µ. = ≥
(iv) 0.08 δ=
(v) 0.03, 0 t
tb e t = ≥
Calculate ( ) Var Z .
(A) 0.075
(B) 0.080
(C) 0.085
(D) 0.090
(E) 0.095
Exam M: Fall 2005 -2- GO ON TO NEXT PAGE
2. For a whole life insurance of 1 on (x), you are given:
(i) Benefits are payable at the moment of death.
(ii) Level premiums are payable at the beginning of each year.
(iii) Deaths are uniformly distributed over each year of age.
(iv) 0.10 i =
(v) 8 x a = 􀀅.􀀅.
(vi) 10 6 x a = 􀀅.􀀅.
Calculate the 10th year terminal benefit reserve for this insurance.
(A) 0.18
(B) 0.25
(C) 0.26
(D) 0.27
(E) 0.30
Exam M: Fall 2005 -3- GO ON TO NEXT PAGE
3. A special whole life insurance of 100,000 payable at the moment of death of (x) includes a
double indemnity provision. This provision pays during the first ten years an additional
benefit of 100,000 at the moment of death for death by accidental means.
You are given:
(i) µ. τ
x t t b gb g= ≥ 0 001 0 . ,
(ii) µ.x t t 1 0 0002 0 b gb g= ≥ . , , where µ.x
1 b g is the force of decrement due to death by
accidental means.
(iii) δ= 006 .
Calculate the single benefit premium for this insurance.
(A) 1640
(B) 1710
(C) 1790
(D) 1870
(E) 1970
Exam M: Fall 2005 -4- GO ON TO NEXT PAGE
4. Kevin and Kira are modeling the future lifetime of (60).
(i) Kevin uses a double decrement model:
x ( )
x l τ ( ) 1
x d ( ) 2
x d
60 1000 120 80
61 800 160 80
62 560 −. −.
(ii) Kira uses a non-homogeneous Markov model:
(a) The states are 0 (alive), 1 (death due to cause 1), 2 (death due to cause 2).
(b) 60 Q is the transition matrix from age 60 to 61. 61 Q is the transition matrix
from age 61 to 62.
(iii) The two models produce equal probabilities of decrement.
Calculate 61 Q .
(A)
1.00 0.12 0.08
0 1.00 0
0 0 1.00
⎛. ⎞.
⎜. ⎟.
⎜. ⎟.
⎜. ⎟.
⎝. ⎠.
(B)
0.80 0.12 0.08
0.56 0.16 0.08
0 0 1.00
⎛. ⎞.
⎜. ⎟.
⎜. ⎟.
⎜. ⎟.
⎝. ⎠.
(C)
0.76 0.16 0.08
0 1.00 0
0 0 1.00
⎛. ⎞.
⎜. ⎟.
⎜. ⎟.
⎜. ⎟.
⎝. ⎠.
(D)
0.70 0.20 0.10
0 1.00 0
0 0 1.00
⎛. ⎞.
⎜. ⎟.
⎜. ⎟.
⎜. ⎟.
⎝. ⎠.
(E)
0.60 0.28 0.12
0 1.00 0
0 0 1.00
⎛. ⎞.
⎜. ⎟.
⎜. ⎟.
⎜. ⎟.
⎝. ⎠.
Exam M: Fall 2005 -5- GO ON TO NEXT PAGE

相关文章


参加2006年春季北美精算师资格考试考生注意事项(二)精算师考试
SOA真题November2005ExamM精算师考试
SOA真题November2005ExamFM精算师考试
SOA真题Course6ExamC精算师考试
澳大利亚华人论坛
考好网
日本华人论坛
华人移民留学论坛
英国华人论坛