2006年-MBA考试辅导线性代数复习提纲一
文章作者 100test 发表时间 2007:02:25 09:20:16
来源 100Test.Com百考试题网
3. 乘积矩阵的列向量组和行向量组,
设A是m´.n矩阵B是n´.s矩阵. A的列向量组为a1, a2,¼. ,an,B的列向量组为b1, b2,¼. ,bs, AB的列向量组为g1, g2,¼. ,gs,则根据矩阵乘法的定义容易看出:
① AB的每个列向量组为gi=Abi,i=1,2,¼.,s.
即A(b1, b2,¼. ,bs)= (Ab1,Ab2,¼. ,Abs).
② b=(b1,b2, ¼.,bn)T,则Ab= b1a1 b2a2 ¼. bnan.
应用这两个性质可以得到:
乘积矩阵AB的第i个列向量gi是A的列向量组为a1, a2,¼. ,an的线性组合,组合系数就是B的第i个列向量bI的各分量.
类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.
以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难看出.然而它们无论在理论上(有助于了解代数学中各部分内容的联系)和解题中都是很有用的.请读者注意例题中对它们的应用.下面是几个简单推论.
用对角矩阵L从左侧乘一个矩阵,相当于用L的对角线上的各元素依次乘此矩阵的各行向量. 用对角矩阵L从右侧乘一个矩阵,相当于用L的对角线上的各元素依次乘此矩阵的各列向量.
单位矩阵乘一个矩阵仍等于该矩阵.
数量矩阵kE乘一个矩阵相当于用k乘此矩阵.
两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.
求对角矩阵的方幂只需把对角线上的每个作同次方幂.
4. 矩阵方程和可逆矩阵(伴随矩阵)
(1) 矩阵方程
矩阵不能规定除法,乘法的逆运算是解下面两中基本形式的矩阵方程.
(I) AX=B. (II) XA=B.
其中A必须是行列式不等于0的n阶矩阵,这样这两个方程都是唯一解
当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它是唯一解.设B有s列, B=(b1, b2,¼. ,bs),则 X也有s列,记X=(c1, c2,¼.,cs).得到Aci=bi,i=1,2, ¼.,s,这些方程组都是唯一解,从而AX=B唯一解.这些方程组系数矩阵都是A,可同时求解,即得
(I)的解法:
将A和B并列作矩阵(A|B),对它作初等行变换,使得A边为单位矩阵,此时B边为解X.
(II)的解法:对两边转置化为(I)的形式:ATXT=BT.再用解(I)的方法求出XT,转置得X..
矩阵方程是历年考题中常见的题型,但是考试真题往往比较复杂,要用恒等变形简化为下上基本形式再求解.